
Kinect Controlled Slide show presentation 1

Kinect Interactions – allow developers to create interactive applications with a new,
well-designed and ergonomically friendlier interaction language than before. The Kinect
SDK can now detect a “push towards the screen” gesture to activate buttons, and this is
the recommended “activate” gesture now instead of the old “hover, wait until the circle
fills and its pressed” gesture. The latest K4W SDK solves this issue by differentiating
between an open and a closed hand. When you close your hand, you “grip” whatever’s
underneath it (such as a scroll viewer), and then you can move your hand to scroll. If
you release the scroller while your hand is still moving, the scrolling keeps happening –
similarly to the inertia scroll you are already used to on touch devices. You can close
your hand again at any time, and stop the inertia – again, as you expected.

Software’s

- Kinect SDK 1.7
- Kinect for Windows Developer Toolkit

Initializing the Kinect Sensor with KinectSensorChooser

The control KinectSensorChooserUI from the Microsoft.Kinect.Toolkit.Controls
namespace indicates the status of the Attached Kinect Sensor, and can inform the user
if the sensor is unplugged, plugged into the wrong USB port, etc.

1. In the MainView.xaml, add the following namespace and add the
KinectSensorChooserUI control to the main grid:

xmlns:k=http://schemas.microsoft.com/kinect/2013
<Grid>
 <k:KinectSensorChooserUI HorizontalAlignment="Center" VerticalAlignment="Top"
Name="sensorChooserUi" />
</Grid>

2. We also need to initialize the KinectSensorChooser from the code behind file
Add a private field to the MainWindow code behind file.

private KinectSensorChooser sensorChooser;

3. Set up an event handler for the OnLoaded event in the MainWindow constructor
(or in XAML, as you wish):

public MainWindow()
{
 InitializeComponent();
 Loaded += OnLoaded;
}

Kinect Controlled Slide show presentation 2

4. create the OnLoaded event handler:

private void OnLoaded(object sender, RoutedEventArgs routedEventArgs)
{
 this.sensorChooser = new KinectSensorChooser();
 this.sensorChooser.KinectChanged += SensorChooserOnKinectChanged;
 this.sensorChooserUi.KinectSensorChooser = this.sensorChooser;
 this.sensorChooser.Start();
}

If a sensor is chosen or got initialized, the code above will invoke the
SensorChooserOnKinectChanged event handler.

If there are no Kinects connected to the computer:

Kinect Controlled Slide show presentation 3

Kinect required

Once the Kinect is connected, it initializes it.

Kinect Controlled Slide show presentation 4

The Kinect Region

KinectRegion is the key element of Kinect Interactions on WPF: it is the screen area
where interactive elements are placed and can be manipulated. KinectRegion is also
responsible for displaying and moving the hand cursor. An application can have multiple
KinectRegions, but they cannot be nested. Each KinectRegion can have its own
respective Kinect sensor.

<k:KinectRegion Name="kinectRegion">
</k:KinectRegion>

Error message:
 “Unable to invoke library 'KinectInteraction170_32.dll'.”

Solution:
This is a common problem with Kinect. The dll mentioned can be a bit tricky to find. The
simplest way is to install the Controls Basics – WPF source code from the Developer
Toolkit Browser (press the Install button) – or just download the sample project for this
article.

Kinect Controlled Slide show presentation 5

In the AnyCPU.Debug folder of the sample’s installation directory, copy the
KinectInteraction170_32.dll and KinectInteraction170_64.dll files to the project’s output
directory.

Note: You may have to wait as much as 20 seconds for the Kinect Sensor to initialize.
During this process, your application will not respond and will show a wait cursor if you
move the mouse over it.

Better hand recognition using Kinect:

User Viewer

The KinectUserViewer displays the depth pixels that belong to an identified user or
users. Use the KinectUserViewer control to make sure that the Kinect SDK “sees” you
as a human and is able to separate you from the surroundings. If you see nothing in the
KinectUserViewer (after the Kinect initialization has finished), it means that the Kinect is
not tracking you, it hasn’t identified you as a person yet. Try to move around, and
remember that you need to be at least a meter (or even more) away from the sensor for
it to detect you.

<k:KinectUserViewer VerticalAlignment="Top" HorizontalAlignment="Center"
k:KinectRegion.KinectRegion="{Binding ElementName=kinectRegion}" Height="100" />

Kinect Controlled Slide show presentation 6

Screenshots:

Interactive Controls

KinectTileButton:
The KinectTileButton is one of the simplest controls available. It resembles a Windows
8-style tile with a template-able label and a Content that is just like the content of the
regular Button control.

In this project, we are using this to display the slides on the bottom of the screen.
Below is the source code to declare the tile buttons dynamically and bind it to the slide
show.

Kinect Controlled Slide show presentation 7

 for (int i = 1; i < 10; i++)

 {

 var button = new KinectTileButton

 {

 Content = i,

 Height = 100,

 };

 int i1 = i;

 button.Click += OnClicked;

 scrollContent.Children.Add(button);

 }

 private void OnClicked(object sender, RoutedEventArgs

routedEventArgs)

 {

 {

 Slideshow.DataContext = "";

 BitmapImage bi3 = new BitmapImage();

 bi3.BeginInit();

 bi3.UriSource = new Uri("Images\\Slide"+

routedEventArgs.Source.ToString().Substring(52,1) +".bmp",

UriKind.Relative);

 bi3.CreateOptions =

BitmapCreateOptions.IgnoreColorProfile;

 bi3.EndInit();

 Picture.Stretch = Stretch.Fill;

 Picture.Source = bi3;

 };

 }

KinectScrollViewer:
 This looks exactly like a standard WPF ScrollViewer. It even has a StackPanel
called “scrollContent”, and these two controls are set up to scroll horizontally

<k:KinectScrollViewer VerticalScrollBarVisibility="Disabled"

HorizontalScrollBarVisibility="Auto" VerticalAlignment="Bottom">

 <StackPanel Orientation="Horizontal" Name="scrollContent" />

</k:KinectScrollViewer>

Kinect Controlled Slide show presentation 8

Now you can move your hand, and the KinectScrollViewer will “stick to it”, much like
when you scroll a list on a touch device, such as a phone or a tablet. If you open your
hand, you will release the KinectScrollViewer. If you push your hand forward, you can
select easily one of the slides.

Screenshots:

Slide select using hand press action

Kinect Controlled Slide show presentation 9

Once the hand press is recognized the hand color changes

Slides corresponding to the Tile button appears after the click

References:

• Kinect SDK and developer for windows downloads:

http://www.microsoft.com/en-us/kinectforwindows/develop/developer-
downloads.aspx

• http://en.wikipedia.org/wiki/Kinect

• Kinect SDK 1.7 features:
http://www.microsoft.com/en-us/kinectforwindows/develop/new.aspx

• http://www.soulsolutions.com.au/Blog/tabid/73/EntryId/853/Kinect-For-Windows-
Interactions-Gallery-ndash-KinectRegion.aspx

